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Abstract
Domain-specific representations (DSRs) allow programmers
to view code in a manner better suited to the domain they
are working in. Creating such DSRs, however, is not trivial
as it requires knowledge of programming language internals
to detect relevant patterns in the source code.
In this paper, we propose a workflow that facilitates the

matching of syntax tree structures and creation of DSRs
without requiring expertise in programming language in-
ternals. In our workflow, authors express the patterns they
want using syntax familiar to them when possible and re-
ceive immediate feedback and means for simple discovery
for the other cases. We demonstrate the feasibility of our
workflow through a prototypical implementation and evalu-
ate it through three case studies. Through this workflow, we
aim to further support authors in creating views on source
code that support their work better than text.

CCS Concepts: • Software and its engineering→ Inte-
grated and visual development environments; Applica-
tion specific development environments.

Keywords: domain-specific replacement, projections, visual
programming
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1 Introduction
Domain-specific representations (DSRs) are views on parts of
source code that better match the relevant domain than plain
text [3]. These can support programmers in understanding
and working with source code by better communicating
properties of the code, such as constraints or actual values.
Many editors support some degree of DSRs, also known as
projections [18], ranging from a simple color picker inside
source code to full visual editors of state machines [4, 10, 11,
14, 15]. From a user’s perspective, a DSR appears as a visual
user interface instead of or next to code. It may rewrite source
code in response to the user’s actions or merely visualize
information.
To create a DSR, authors match a relevant pattern in the

source code, define a view to be displayed, and may define
actions that adapt the source code according to the author’s
interactions with the view [3, 9]. Important other concerns
include versioning and sharing DSRs between authors or
projects.

When new requirements surface in the code base’s domain,
creating new or adapting existing DSRs is not a straightfor-
ward task. Typically, creating a DSR will require the author
to build an understanding of

• the structure of the host language’s syntax tree,
• the editor’s API, and
• a means to create user interface elements.

In particular when authors work with DSRs that are hosted
on top of textual general-purpose programming languages,
intricacies of syntax complicate the structure.

In this paper, we present ideas and initial implementations
for a workflow that supports authors in creating their own
DSRs on top of textual general-purpose programming lan-
guages. The workflow aims to reduce or even eliminate the
requirement to understand language structures and offers
guidance for matching source code to editing the source
code with the user interface. Note that we assume that users
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are generally familiar with constructing user interfaces in
the respective editor’s host environment. However, we still
describe the implementation of some user interface wid-
gets that facilitate the interface’s interaction with the source
code—in our own experience the most challenging part of
the user interface code.
The vision our proposed workflow contributes to sees

programmers become authors which create and adapt DSRs
for the textual general-purpose code they are writing, to
better support their own or teammates’ understanding of
the code. For instance, these DSRs may be used to remove
failure points during edits, by placing constraints. Or, they
may act as an inlined form of documentation, for example
by creating dropdowns for enums or by pulling values from
a specific runtime to provide better feedback [3].

This paper focuses on the creation of DSRs. Sharing, ver-
sioning, and conflicts of DSRs are futurework. The remainder
of the paper is structured as follows. In section 2, we add
context to the challenge and describe related work. In sec-
tion 3, we describe our own system. In section 4, we then
describe several use cases using our system. We then dis-
cuss our system and describe future work in section 5 before
concluding the paper in section 6.

2 Background and Related Work
In this section, we first briefly introduce the representation
of syntax trees. Next, we give an overview of some examples
of matching structures in syntax trees. We then briefly dis-
cuss challenges when going beyond matching to editing of
source text. Finally, we describe some approaches to match-
ing chosen by related work.

2.1 Concrete and Abstract Syntax Trees
Textual general-purpose programming languages are usually
parsed and turned into a syntax tree for further processing by
the language ecosystem. These syntax trees offer a reliable
way for authors of DSRs to identify textual ranges of inter-
est: the syntax tree approximates the same structures that
authors would think of in terms of constructs they formulate
while programming.

However, they typically use terminology that authors are
not necessarily familiar with, include details that they may
not care about, and do not directly communicate higher-level
structures that authors may expect. As an example, take the
default JavaScript parser1 written for the Tree-sitter parsing
framework2. A const or let assignment gets parsed into a
“lexical declaration” node – a term that programmersmay not
necessarily use. Further, this node does not directly include
the value it is assigned to. Instead, it includes an arbitrary
number of “variable declarator” nodes, separated by commas
–while programmers will likely know that declaringmultiple

1https://github.com/tree-sitter/tree-sitter-javascript/
2https://github.com/tree-sitter/tree-sitter

const oceanTemp = [ 1.02 , 0.85 , 0.9 , 1.18]

program

kind name

value

lexical_declaration

identifier

array

variable_declarator

number number number number

Figure 1. AST, CST and Text: the nodes that are only in the
concrete syntax tree are shown in green, with the abstract
nodes in black. As the black nodes communicate structure,
while the green nodes communicate content, it depends on
the use case whether they are of relevance.

variables in one declaration statement is possible, they may
not always expect or want to handle it, if they are merely
looking for a simple assignment to a value. Lastly, Tree-sitter
differentiates between named and unnamed nodes: typically,
named nodes are those that are more important on a seman-
tic level, such as an identifier or an expression statement, and
unnamed nodes are syntactic details, such as a semicolon.
However, in case of the “lexical declaration”, the parser de-
signers chose for the let or const to be an unnamed node –
an information that may be important to programmers in
some scenarios.
Two types of syntax trees exist the concrete syntax tree

(CST) and the abstract syntax tree (AST), as illustrated in
Figure 1. A concrete syntax tree (CST) includes all informa-
tion that can be obtained from the textual source, such as
whitespaces, delimiters, or keywords, whereas an abstract
syntax tree omits most of these and focuses on the semanti-
cally most meaningful structures, such as identifiers, control
flow constructs, or declarations. Consequently, to go from
a CST to an abstract syntax tree (AST), we want to remove
information that may be considered secondary, for example
whitespace. To facilitate this, some parsers communicate
relevance of the syntax tree node, such as Tree-sitter’s infor-
mation on whether a node is named. For example, an entire
if condition statement remains as a node in the AST, but
the parts that it is made up of, the keyword, whitespaces, or
braces, which are part of the CST, are omitted in the AST.

2.2 Finding Structures in Syntax Trees
The first challenge facing authors of DSRs is capturing the rel-
evant parts for the replacement from the syntax tree. In this
section, we will evaluate a selection of possible approaches
for finding a pattern in the CST. We selected the approaches
to demonstrate a broad range of possibilities. As a running
example throughout the paper, we will try to capture colors
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defined as a JavaScript object with a field for the red, green,
and blue color channels:

const color = { r: 0.54, g: 0.8, b: 0 };

Parsed by Tree-sitter, this results in the following tree:
program

lexical_declaration

variable_declarator

name: identifier

value:

object

pair

key: property_identifier

value: number

pair

key: property_identifier

value: number

pair

key: property_identifier

value: number

Indent shows a parent-child relationship, an identifier
with a colon signifies a child that is at a specific named field.
We want to capture the object and if possible the values for
each field.

Regular Expressions. When faced with the challenge
of matching a pattern from text, regular expressions are an
often used tool. Matching the above example can be achieved
using this regular expression:
\{ r: ([0,1]\.?\d*), g: ([0,1]\.?\d*), b: ([0,1]\.?\d*) \}

Regular expressions are a well-known technique with a
large ecosystem for authoring and testing. Since they operate
directly on the input string rather than the syntax tree, no
knowledge of the underlying language is required. However,
regular expressions are limited and exceptionally brittle for
a complex use case such as this one. For instance, the above
regular expression assumes an exact layout of whitespaces.
While this can be adapted, it significantly complicates the
expression, as most parsers allow whitespace between every
single token. Similarly, parsing balanced parentheses, a very
common construct in textual programming languages, using
regular expressions requires special extensions.

jq. The command-line utility jq exposes a terse language
for matching and transforming JSON objects. The output of
a parser can be trivially mapped into JSON. For the following
example, we choose a JSON object structure with a field for
the node’s type and a list of children. A query in jq for our
example can look as follows:

jq '..

| select(.type? == "object" and

(.children | length) == 3) .children

| select(.[0] .text == "r" and

.[1] .text == "g" and .[2] .text == "b")'

Here, the author is required to understand internals of the
language, such as the type of the object and its composition.

Imperative. Given the parse tree, a straightforward way
to find the desired structure is through a depth-first search
that imperatively checks properties of the current node and
its surroundings. While this approach is versatile and can be
adapted to match any structure in the tree, it also requires
internal knowledge about Tree-sitter and CSTs in general.
The results of this approach tend to be long blocks of code,
which depending on the complexity might be hard to com-
prehend for someone who wants to make changes to the
DSR. Below is an example in JavaScript:

function matchRecur(tree, captures, cond) {

if (cond(tree)) captures.push(tree);

return tree.children.forEach((it) =>

matchRecur(it, captures, condition));

}

const captures = [];

matchRecursive(tree, captures, (tree) =>

tree.type == "object" &&

tree.children.length == 3 &&

tree.children[0].text == "r" &&

tree.children[1].text == "g" &&

tree.children[2].text == "b"

);

Tree-sitter Queries. As in other contexts like relational
databases, some specialized query languages for syntax trees
exist. Tree-sitter itself offers a declarative language formatch-
ing syntax tree patterns. A query consists of a tree pattern
written in S-Expressions with optional checks for fields of
nodes. Nodes that match can be captured by marking them
using a symbol with an “@”-sign. To obtain the name of the
assignment to an array for the example above, we can use
the following query:

(object

(pair

key: (property_identifier)

@rk (#match? @rk "r")

value: (number) @r)

(pair

key: (property_identifier)

@gk (#match? @gk "g")

value: (number) @g)

(pair

key: (property_identifier)

@bk (#match? @bk "b")

value: (number) @b)

) @color

Consequently, to create a query with the Tree-sitter query
language the author has to know the specific names of the
language’s syntax nodes the authors of the parser implemen-
tation have chosen.
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AST-Grep. AST-Grep trades some versatility compared to
the tree-sitter query language for a much easier and faster
query creation. Instead of letting the author construct the
pattern, AST-Grep generates the pattern from code in the
same language as the CST by using Tree-sitter. Special syntax
within the code used to construct the pattern allows for parts
to be matched. This allows the author to just copy the code
that should be matched, and then replace the generic parts
of it. On this basic level the author just writes code and only
needs very little if any knowledge about tree-sitter or CSTs.

{r: $R, g: $G, b: $B}

Gremlin. Since trees are a subset of graphs, the syntax
tree can be translated into a graph database. These databases
usually come with their own query language(s). Since these
languages are designed for graphs they cannot leverage the
special properties of trees. Still, it is possible to use them
to capture the necessary parts from the syntax trees. With
Gremlin as query language and Apache TinkerPop as data-
base, a possible query could look like this:

g.V().hasLabel('object ').as('o').

where(

out('child ').hasLabel('pair').as('p').

out('key').hasLabel('property_identifier ').

values('text').is('r')

).where(

out('child ').hasLabel('pair').as('p').

out('key').hasLabel('property_identifier ').

values('text').is('g')

).where(

out('child ').hasLabel('pair').as('p').

out('key').hasLabel('property_identifier ').

values('text').is('b')

).select('o')

Similar results can be obtained by using Neo4j as database
with Cypher as a query language.

Matching of simple patterns like the running example of
this section is achievable with all approaches, with varying
complexity. AST-Grep is the only of the presented query
mechanisms that does not require the author to know in-
tricacies of the language but also constrains matching to
entire subtrees, unless its more complicated YAML interface
is used.

2.3 Editing Syntax Trees
A DSR may not merely want to communicate information
but also make it editable. For example, a color picker or a
dropdown for enum values will need to change the source
code in response to interaction with its user interface. These
modifications of source code must be performed in a man-
ner that maintains a valid source tree, which, depending on
the language, can be challenging. Aspects to be considered
include:

• When updating the value of a JavaScript string, the
DSR must make sure that quotes are correctly escaped.

• When inserting into an array, a new comma may have
to be added, unless a trailing one was already present.

• When changing an expression, precedence rules may
require adding parentheses.

• Users may wish for the changes to be performed ac-
cording to their formatting preferences, e.g., indenta-
tion, line length limits, or brace positions.

With these constraints, DSR authors have to anticipate
user input well and accommodate the quirks of their host
language’s syntax. A seemingly simple synchronization be-
tween a text field and a string may become a challenge if the
host language does not support multi-line strings.
In a projectional editor, where syntax is merely a visual-

ization of the structure, these modifications are trivial. In
text editors, authors have to come up with their own, of-
ten complicated, logic to reliably modify the source text to
incorporate their change and still yield a valid tree.

2.4 Related Work
Several systems and approaches exist that facilitate creating
DSRs. MPS [17] is an IDE for language workbenches [7] that
include visual elements, such as state charts or machines,
as for example seen in mbeddr [15]. MPS, as a projectional
editor, is fully visual. Users define composable languages and
users explicitly invoke a construct from a language while
authoring. As such, a matching step over a syntax tree is not
needed.
DSRs can be considered a form of term rewriting [12]:

we detect patterns in source code and transform matched
pieces of code into a different view. Unlike term rewriting
for meta-programming, the transformation does not have an
impact on runtime but is a bijective, temporary mapping that
only occurs in the editor view. From an end-user perspec-
tive, DSRs may appear akin to embedded domain-specific
languages (DSLs), where a DSL is embedded within a host
language. DSLs can appear in textual environments [7] but
also fully visual [16].

Moldable Tools and its implementation Glamorous Toolkit
facilitate the construction of custom tools and custom views
on objects [5] through the polymorphic invocation of well-
defined methods for inspection. The matching process is
thus inverse: objects communicate themselves how they can
be visualized. Lorgnette [9] aims to make the definition of
projections within code easier by allowing multiple types
of patterns to detect relevant pieces of code—our approach
could be used to facilitate formulating Lorgnette’s syntax
pattern. Similarly, Barista [11] is a structured editor that
supports swapping out elements with visual alternatives.

Several systems, such as Moonchild [6], Interactive Visual
Syntax [1], Larch [8] and LiveLits [13], demonstrate scenar-
ios for what a replacement of source code in favor of a visual
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visit each
parse node

(1) match and (2) extract 

A D

P

B C

Parser

create / update
(3) view

node:

name: B

X

node:

name: B

A

(4) editA

B C

changed code

Step

Step

Step

Editor

Code
Widgets

on change

Domain Specific Replacement

Captures

create / update widgets

DSR View

Pipeline

Figure 2. Update cycle in our workflow. The host editor
signals changes to the code. The code is then parsed and the
resulting parse tree is passed to the DSR system. Here, we
update or create any DSRs and pass resulting widgets to the
host editor. When a change in the view occurs, we inform
the host editor of the new source text.

editing interface could look like. Matching in these systems
occurs through custom code without specific framework
support or is limited to matching literals.

3 Approach
We propose a workflow that requires less experience with
the host language’s structure and the editor’s API for the
creation of DSRs. To demonstrate its feasibility, we describe
a reference implementation capable of the outlined func-
tionality. Its implementation is accessible open source on
GitHub3.

Our reference implementation is designed for Tree-sitter
grammars in a simple web code editor based on the popular
CodeMirror4 editor framework. The main challenges tackled
in this paper, matching structures in syntax trees and editing
source text, are not tied to these technologies and can be
transferred to any other parsing library by adapting the
methods for tree traversal.

3.1 Creating a DSR
We can describe the creation of a DSR as a process of four
steps, embedded within a textual code editor.

3.2 Editor Interface and Update Cycle
The approach as we describe it is independent of a specific
editor implementation, as long as it

• informs our system of changes to source files, and
• is able to display user interface elements on top of or
near its source code.

The update cycle is shown in Figure 2. A suitable parser takes
the changed source code and turns it into a parse tree for
the matching step.
3https://github.com/hpi-swa-lab/sb-augmentation-builder
4https://codemirror.net/

This is where our proposed system comes in and the list
of DSRs that are active. First, the author needs to formulate
a matching pipeline to reliably find the desired language
construct in the parse tree. As above, we use as a running
example a JavaScript defining a color. The matching pipeline
is run against all nodes in the parse tree to find matches.

Second, the author captures information relevant to their
use case from the matched parse tree nodes. This could for
instance be the textual value of the identifier or the textual
range of the array.
Third, the author defines a view: a user interface to be

displayed instead of, or near, the relevant text of the source
code. In our example, the author may want to show a colored
rectangle next to the color definition.
Finally, the user interface may not only display informa-

tion from the source code but also edit the source code. For
example, when clicking the button a color picker opens and,
once a new color is chosen, it is written into the object.

3.3 Matching Source Code Structures
In section 1, we formulated as a goal to allow authors to
match language constructs without the need to know lan-
guage internals. To approach this problem, we implement
two ideas:

• stick to the surface syntax of the language, familiar to
the authors, as much as possible, and

• show the intermediate state of the matching process
at all times and make it interactive, such that users can
recognize, rather than recall, when the syntax of the
language is not sufficient to constrain a match.

Authors begin the creation of a DSR by locating or formu-
lating an example piece of source they would like to match,
to facilitate showing the state of the matching process. In our
reference implementation of the proposed workflow, authors
select the relevant source code and hit a shortcut to create
a DSR. Now, a DSR builder window opens, resembling the
user interface shown in Figure 4. In the window, we include
the example the author had selected, as well as a query that
matches this example exactly.

Queries. The query mechanism we use is similar to AST-
Grep queries, as described in subsection 2.2. Specifically, we
extend it with optional and parent matches such that the
patterns can be better integrated in the editing flow described
in section 3.6. As an example, consider the following snippet
of code defining an object literal for an RGB color:

const color = { r: 0.3, g: 0.1, b: 0.6 };

Our DSR author would like to match the object literal and
capture the RGB values. A query returns either null or the
syntax tree nodes captured by the wildcard tokens starting
with a dollar sign.

{ r: $r, g: $g, b: $b }

https://github.com/hpi-swa-lab/sb-augmentation-builder
https://codemirror.net/
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Our DSR author wants to support a fourth, optional field
that may be set on the object denoting the minimum and
maximum value of each color channel:

const color = {r:3, g:1, b:6, range: [0,10]}

To match this expression, we can contain the optional
element within special (?...?) markers.

{r:$r, g:$g, b:$b, (? range: [$low, $high] ?) }

To capture this array, we can use another special token of
the form $_container. This token captures its parent instead
of denoting an element, allowing us to specify that we expect
an array and also capture it.

{ r: $r, g: $g, b: $b, (?range: [$_range] ?) }

If, instead, we want to match all channels at once, we
could use the special $$$rest token that allows a container
to contain arbitrarily many children and captures these.

{ $$$colorChannels , (?range: [$_range]?) }

The design of the query mechanism allows capturing a
variety of elements while sticking to the host language’s
syntax that is familiar to users, as opposed to names of node
types in the parse tree. The query language is not able to
express all queries that may be of interest to the user. For
example, imagine we want to ensure that each RGB chan-
nel field contains a number. In terms of the parse tree, in
JavaScript the decimal numbers above would parse to nodes
of type number, while for example in Ruby they would parse
to nodes of type float. To support DSR authors to quickly
figure out these internal type names, queries in our DSR
builder are contained within pipelines that show outputs of
matches, which we will describe next.

Pipelines. Queries in our workflow are steps in a pipeline,
as seen for example in Figure 3. Each step produces an output
that is then used as input for the next step. If the output of
a step is true then the input of that step is its output. This
allows to filter elements. If any step produces no output or
false, the entire pipeline fails. In the DSR builder, outputs
are visualized and thus allow DSR authors to understand
what data flows through their matching system and how it
is structured. For context, you may want to first look at a full
pipeline, as seen for example in Figure 4. Steps of a pipeline
may be:

arbitrary code Receives the input as it and may return
any output. Multiple statements are allowed as well.

query Execute a query, as described above, on the cur-
rent input, and return any captures as matches.

queryDeep Execute a query on the current input and
all its children, stopping on the first match, and return
any captures for that match as output.

extract Access a field of the input object and return it
as output.

type Check that the input node’s type matches.

In addition, several types of steps facilitate control flow
within a pipeline:

optional Execute a pipeline without failing the outer
pipeline on failure.

all Fork the pipeline: the current input is provided to all
the pipelines specified in the all step.

first Given a set of pipelines, execute the pipelines in
order until one of them succeeds.

spawnArray Expect that the current input is an array
and invoke the given pipeline for every element of that
array. Elements that do not match are filtered out.
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matchAll Works like spawnArray but expects a pipeline
which results in true or false. The pipeline is executed
on each element of the array. If any element does not
produce true then matchAll returns false.

The graphical shapes as shown above are in fact DSRs, as
further described in subsection 4.3. Consequently, authors
can decide between the graphical editing mechanism shown
above or a plain text editor, should they not need the feedback
mechanism or other hints that facilitate editing. Below is the
textual representation of the pipeline shown in Figure 4.

[

query('"$content"'),

(it) => it.content,

capture("node"),

(it) => it.text,

first(

[

(it) => /rgb(( d+),( d+),( d+))/i.exec(it),

(it) => ({

r: parseInt(it[1], 10),

g: parseInt(it[2], 10),

b: parseInt(it[3], 10)

})

],

[

(it) =>

/#([a-z0-9]{2})([a-z0-9]{2})([a-z0-9]{2})/i

.exec(it),

(it) => ({

r: parseInt(it[1], 16),

g: parseInt(it[2], 16),

b: parseInt(it[3], 16),

}),

],

),

all(

[(it) => it.r, capture("r")],

[(it) => it.g, capture("g")],

[(it) => it.b, capture("b")],

),

]

Returning to our example, Figure 3 shows the construction
of the pipeline that adds the additional check that all provided

Figure 3. Constructing the pipeline that matches an object
where every value is a number. By right-clicking in the object
explorers showing the result value of each step, the system
offers contextually relevant actions to constrain or transform
the values.

color values need to be numbers. To build this pipeline, we
begin with the query from above, which is expressed in
the DSR’s target language, here JavaScript, with dollar-sign
captures.
Using the output previews of the steps, we can explore

the structure of the outputs to understand how we need to
constrain or transform the values. This way, we are guided to
some aspects of language internals, namely that the desired
language internal name for the value nodes should be number.

3.4 Capturing
Once we have successfully matched a subtree, we want to
capture the nodes and values relevant to build our user in-
terface. For this purpose, the pipeline has a special step:

capture Marks the current input and stores it under a
name for use by the view.
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All values that have been captured are returned as the
result of a successful match of a pipeline. If the pipeline
match fails, no view is constructed. The set of captures of a
successful match is then passed to the view.
To make updates more efficient, it is preferred to trans-

form values into the final form that the user interface expects
before capturing them, as opposed to extracting values while
constructing the view. For instance, if we want to capture
whether a string literal has the value "active", we do not
capture the string literal node, but instead compare its string
contents and capture a boolean. This is in particular ben-
eficial for performance, as it allows us to inform the view
whether or not it needs to re-render by comparing if the
previously captured values differ from the newly captured
ones.

3.5 View
Now that we have captured a set of named nodes or values,
the author can use them to construct the view. As already
illustrated in Figure 2, the source code editor is responsible
for informing our system when changes to a file occur. On a
change, we re-run the pipelines of all defined DSRs and see if
the captured values have changed compared to the previous
render. If so, we provide these updated values and allow the
user interface to re-render itself.
Our implementation allows the author to use any frame-

work supported by the host editor for constructing the view.
As described, our system provides the author with the output
from the capturing step and allows the view to cause changes
to the source code through our system’s editing support.

The widgets authors can use to construct the view depend
on the chosen framework of the implementation. If the host
platform has a visual means to construct user interfaces,
authors might again not need specific expertise.
To tackle some of the challenges we observed when con-

structing user interfaces, we suggest for the host platform
to offer three built-in widgets:

• A NodeList widget allows authors to display a list of
widgets that each correspond to a syntax tree node.
The NodeList takes care of displaying remove and in-
sert buttons between items in the list that change the
source code accordingly, as described next in subsec-
tion 3.6.

• A TextArea widget allows editing the, optionally un-
escaped, contents of a syntax tree node. The means of
unescaping text are also further explained in subsec-
tion 3.6.

• An EditorPane nests an instance of the host editor view
in a widget and thus allows nesting editable source
code expressions.

3.6 Editing
When the user interacts with the view, the intent is likely
to edit the underlying source code. In the simplest case, the
user might want to replace the textual contents of a number
with another number through the view. For this, our imple-
mentation offers a node.replaceWith(string) call that replaces
the text range of the given node in the source code with the
given string.

During our own experiments with constructing DSRs, we
observed a number of scenarios that complicate propagating
edit operations to the code. Below, we describe how our
system can accommodate these while hiding as many details
concerning the language’s structure and complications that
arise from it from the DSR author.

Editing Lists. As an example, take a JavaScript array of
the form [1, 2], in which we want to append the number 3
at the end. Here, we need to also insert a comma before the
number. In our reference implementation, we automate this
process. The author can do a simple insert call of the form:

arrayNode.insert(text: "3", index: 2)

Given that call, the system searches the grammar defini-
tion of the container node for points where a variable number
of nodes can be inserted. Once the system found such a point
in the definition, we partial-parse [2] the nodes already con-
tained in the container, meaning we take the nodes of the
container and its definition in the grammar and identify to
which grammar operators they belong. When we encounter
a suitable repeating grammar operator, we begin counting
the number of nodes already contained within, until the in-
dex the user requested is reached. Through a heuristic, we
analyze the grammar operators within the repeat operator
to find if the list is delimited. Once a delimiter is detected,
we can see if there already is a trailing delimiter. With that
information obtained, the system can finally deduce the ex-
act position and string the system needs to insert to arrive
at the final expression [1, 2, 3].

Editing Textual Contents. We allow users to specify that
they want to make the textual contents of a node editable
in a text field to the user and specify a mapping for trans-
lating from source code to text field. As examples, picture
the name of an attribute, obj.attr, or the contents of a string,
"my string content".

A straightforward mapping simply takes the source code
as-is and displays it in the text field. A mapping for source
code that is subject to escaping rules, requires a list of sub-
stitutions that should occur. For example, in a JavaScript
string, a new line must be escaped as \n or a nested quote
as \". Given the list of substitutions, the system then takes
care of translating edits by following the set of rules. For
instance, if the user types a quotation mark in a JavaScript
string that is also delineated by quotation marks, the system
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instead inserts an escaped quotation mark in the source code
but displays only the simple quotation mark in the text field.

Another type of mapping optionally adds delimiters. This
is relevant for example for JavaScript object keys: a defini-
tion such as {a: 3} is valid JavaScript, but the key requires
quotation marks if it contains special characters such as
{"a-b": 3}. The mapping takes care of inserting or removing
the delimiters as needed.

Editing Optional Elements. We allow users to specify
optional elements as described in subsection 3.3. Handling
the presence and absence of optional elements would sig-
nificantly complicate view code written by DSR authors.
Fortunately, the query already provides all relevant informa-
tion needed to automatically insert a missing element. For
example, consider a query such as the following:

{ key1: $value, (?key2: [$_list]?) }

Here, we follow the Null Object pattern [19] where the sys-
tem returns a proxy syntax tree node for the list that the
author expects to find if it is missing in the code. If any edit
operation affects the list, we first insert the entire optional
element into the document and then proceed with the op-
eration. Read operations on the missing element return an
empty list. Consequently, the DSR author can write code
as if the element was present and the system handles its
creation if needed. The same applies for primitive values:
func((?$arg:false$?)) returns a captured node for the argu-
ment even if it is not there and returns false as its content
for any read operations.

4 Evaluation
In this section, we show three brief case studies of DSRs, to
demonstrate the range of tools we have constructed using
our own system.

4.1 Color Picker
A commonly seen DSR is a color picker: for expressions
that contain colors, a color picker or preview of that color
is displayed instead of or next to the expression in code.
In Figure 4, we show a pipeline that matches colors in hex
notation #ff9900, as well as colors of the form rgb(255,125,0).
We start by matching any string, extract its text, and see

whether it complies with either of the formats we expect by
using a regular expression. If so, we extract the color chan-
nels and store them in three separate captures. Capturing
the whole regex match would have also been possible.
We also show the view construction code in Figure 4.

Our reference implementation uses Preact for constructing
user interfaces. We receive as inputs the captures and return
a declaration of the view. When the color input changes,
we simply replace the contents of the node containing the
current color value with the new color.

Figure 4. Pipeline, view, and examples that construct a color
picker for colors in hex and in rgb() notation.

Below the view in Figure 4, we have created two examples.
At the moment, the top example is active and is used to show
the output previews in the pipeline. To the right of each
example, we see a preview of the final user interface in an
inline editor. The depicted code is all that is necessary to
match and display the shown color picker. Depending on
the host editor’s API, the match and view code will need to
be registered with the editor to be applied on load and to
update when the user changes text in the editor.

4.2 2D Array to Table
In Figure 5 we find the pipeline to match nested JavaScript
arrays where all the nested arrays have the same size. Here,
we need four types of steps: query steps allow us to specify
that we are looking for arrays; based on the feedback below
each step, we added several field extract steps; we capture
the number of columns and rows; and finally, a matchAll
step containing an arbitrary code step verifies that the length
of each of the nested arrays matches.

4.3 The Tool Itself
We bootstrapped the reference implementation of the pre-
sented workflow using the pipeline and view system itself.
We edited the serialized, textual version of the pipeline in-
stead of working with the user interface while it was still
being constructed.

As seen in the excerpt of the first six cases in Figure 6, the
user interface tends to overflow horizontally for large all or
first steps. Notably, however, as in the previous case studies,
no knowledge of language internals is required to formulate
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Figure 5. A pipeline matching two-dimensional JavaScript
arrays where all nested arrays have the same size. We be-
gin by matching an array (note the square brackets) and
extracting the items it contains. We then capture its length
as our number of rows, and query and extract the number
of columns from the first row. Finally, we iterate over all
rows and verify that they are indeed arrays and all have
the same number of columns as the first column that we
previously captured. In the top right, we can see a text field
with a 4-by-3 nested array containing numbers. Next to it is
another text field where the nested array is replaced with a
table containing all the numbers.

the pipeline. The pipeline is essentially one large first step
that matches the different steps described in subsection 3.3.

5 Discussion and Future Work
In the following, we first discuss how well our proposed
system matches our set goals so far, before outlining future
work.

5.1 Supporting Creation of DSRs
In section 1, we set the goal for our proposed workflow
to allow authoring DSRs without knowledge of the host
language’s syntax tree, and while supporting authors with
the editor’s API and user interface.
In terms of knowledge of the language’s internals, our

system chooses to let authors start with familiar syntax and
offer exploration means to learn what further constraints
are needed. These further constraints will often concern lan-
guage internals. As our tool’s user interface offers contextual
actions and supports the discovery of these internals, the
chosen design may be a compromise to give authors full

flexibility while still not requiring them to explicitly learn
about the language internals. A user study will need to be
conducted to better understand the effect.
In limited, informal user testing, we noticed a tendency

for users to want to skip the pipeline system altogether for
very small queries, e.g., just matching a number. Typically,
the queries then started to grow, which led the users to
then appreciate the feedback mechanism of our tool. These
insights may indicate that the entry to start creating a DSR
is not sufficiently easy yet.

Concerning scaling, especially in Figure 6 we see that the
visual approach to constructing pipelines in our reference
implementation may run into issues. While the code for the
same purpose is also unwieldy, we can use functions to better
compartmentalize concerns. Creating sub-pipelines is thus
also a likely next step. Further, we could consider introducing
step types for better management of layout and structure.
For example, Kotlin has an also operator that allows running
some code without changing the object that traverses the
pipeline further.

The editor’s API comes into play for transforming or filter-
ing in pipelines beyond type matches or accessing children.
For this purpose, a future design could investigate augment-
ing the output previews to not just make fields visible but
also API methods. In addition, authors need to know the API
to edit the source code. Here, we offer the built-in widgets
that bind values directly to the view. For custom mappings,
however, we currently offer no additional support.

Finally, for constructing the user interface, we are assum-
ing that the author is familiar with the host platform’s user
interface construction means. As described in subsection 3.5
and subsection 3.6, our reference implementation offers au-
thors widgets that facilitate editing source code.

From a user interface point of view, the graphical interface
allows us to more easily communicate available actions and
provide feedback. On the flip side, graphical interfaces tend
to be associated with cumbersome, mouse-heavy interac-
tions, especially in an otherwise keyboard-centric setting.
We believe that adapting the user interface to remain graph-
ical but be navigable via keyboard is possible and should
satisfy both ease of use and a desire for the efficiency of a
keyboard.

5.2 Matching Intent
As described, our goal is to remove the need for authors
to have a deep understanding of language internals. How-
ever, programming language syntax often encodes various
language-specific peculiarities that complicate matching. Be-
low are some examples from Tree-sitter’s JavaScript parser:

1. We get an extra formal_parameters node for (a) => {}

when compared to a => {}. (Note the parentheses sur-
rounding the parameter a).

2. A pattern like obj.$key would not match obj["field"].



Supporting Construction of Domain-Specific Representations in Textual Source Code PAINT ’24, October 22, 2024, Pasadena, CA, USA

Figure 6. Excerpt of the first six steps for the pipeline used to construct our workflow’s reference implementation.

3. function a() {} parses to a function_declaration node,
whereas function() {} parses to a function_expression

node.
While authors likely mean to simply search for desired

language construct, these differences in the shape of the
syntax tree would let their query fail for no apparent reason—
until they compare the internal structure of the two syntax
trees. In future work, these pitfalls would likely need to be
addressed as a post-processing step for the grammar. The
grammar could be annotated to note that some language
constructs may be considered identical.

As another challenge, fields in object literals in JavaScript
may be specified in any order. A query pattern to match
against an object literal will, however, only match if the
order is as specified in the pattern. As a solution, a future
version could allow users to specify that order of children
in a container does not matter. Alternatively, grammars for
languages could be annotated to indicate which language
constructs have no concept of order.

Similar challenges arise for language constructs that make
heavy use of composition. As an example, consider the typi-
cal way of constructing objects in Smalltalk:

MyObject new

field: 1;

anotherField: 2.

Here, we receive a cascade node instantiating MyObject and
setting two fields. The author wants to match the entire in-
stantiation and capture any fields that are set. If the fields are
optional, the following two instantiations would be equally
valid:

MyObject new.

MyObject new field: 2.

The first of which is a unary message send node, while the
second is a keyword message send node, each containing
the instantiation. The author will likely be looking for the

abstract construct “instantiations of MyObject”, which re-
quires three different queries for each of the above scenarios.
A solution may be to offer built-in matching steps such as
smalltalkObjectInstantiation('MyObject') that hide these vari-
ations. Authors may of course also write their own reusable
steps to match patterns specific to their use of a framework
or language.

5.3 Language Agnostic DSRs
A subset of DSRs is likely desirable to have in an unchanged
form across languages or frameworks. As an example, a tabu-
lar display of arrays can be expressed in most languages and
various frameworks have special constructors for creating
two-dimensional data.
Here, the view remains the same across frameworks and

languages. Only the matching, capturing, and editing steps
vary. It would be desirable for authors to be able to specify
that their framework or language also contains a notion
of two-dimensional data literal and how it may be edited
and for the table DSR to then automatically extend support
accordingly.

We have investigated first steps through a languageSpecific

step for pipelines that allows authors to list pairs of languages
and steps. Finding an extension mechanism to allow extend-
ing the DSRwithout touching the original definition is future
work, as it touches upon aspects of versioning and sharing.

6 Conclusion
In this paper, we present a workflow and prototypical imple-
mentation for building domain-specific replacements. The
workflow’s goal is to closely match the level of abstraction
that programmers as authors of DSRs are familiar with from
programming languages, without requiring knowledge of
parser or language structure internals. We achieve this goal
by making use of the language’s syntax itself where possible
and otherwise provide simple exploration means for authors
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to identify just enough of the internals to build their DSR. In
three case studies, we demonstrate that our approach works
and identify further areas of improvement. Using our work-
flow, we hope to make it easier for authors to create their
own DSRs and thus make their workflows better adapted to
their problem domain.
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